The Holographic Universe

Just so life does not get too easy or boring, try to wrap your noggin around the holographic principle of the universe.    [Ok, concentrate and read this passage until your brain hurts]

The theory suggests that the entire universe can be seen as a two-dimensional informational structure “painted” on the cosmological horizon, such that the three dimensions we observe are an effective description. So, think of the universe and your reality as a balloon, where you live on the inside of the balloon interacting with reality as a 3D holographic projection of a two dimensional set of “instructions” that is “painted” on the inside walls of the balloon.  Stated differently…holy crap – who thinks this stuff up?

Well, actually some of our most respected theoretical physicists. First proposed by Gerard ‘t Hooft, “. . . it was given a precise string-theory interpretation by Leonard Susskind who combined his ideas with previous ones of ‘t Hooft and Charles Thorn. As pointed out by Raphael Bousso, Thorn observed in 1978 that string theory admits a lower dimensional description in which gravity emerges from it in what would now be called a holographic way.” (I hate citing Wikipedia, but you can lookup the specifics and cites).

Note: Please See

[The Holographic Universe, by Michael Tabot, 1992 and 2011]

And

[Black Holes, Information and the String Theory Revolution – The Holographic Universe, By Leonard Susskind and James Lindsey, 2005 – 2010]

And, of course

[From Eternity to Here – The Quest For The Ultimate Theory of Time, By Sean Carroll, 2010]

Now that we have cleared that up, the question is, what impact does the holographic principle have on a workable theory of time? Importantly, the holographic principle actually solves the black hole information paradox within string theory and independently proves entropy’s role in determining the direction of time (from the past to the future – see previous posts on entropy).

The arrow of time moves from low entropy (order) to high entropy (disorder), pursuant to the 2nd law of thermodynamics.  A good example of entropy in action is how the 1000+ pages of War & Peace react to being thrown in the air. If the book is unbound and in single sheets, entropy predicts, correctly, that if the pages are thrown off the 4th floor of a building, they will land in any one of a trillion or more different and distinct combinations – and none of them will have page 1 on top and page 1o00 on the bottom. Just like a broken egg (high entropy-disorder) will never turn back into a whole egg incased in the shell (low entropy-order). This is inspired by black hole thermodynamics.

In the case of a black hole, the insight was that the informational content of all the objects that have fallen into the hole could be entirely contained in surface fluctuations of the event horizon. The holographic principle resolves the black hole information paradox within the framework of string theory.

Now, if you are still confused, take heart – it is said that there are only a handful of   theoretical physicists in the world who have the understanding to properly explain the interaction of quantum mechanics, string theory, and the theory of time.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>